Usual preface, I’m with PreciseBits so while I try to only post general information take everything I say with the understanding that I have a bias.
I’m not aware of a good one. The closest you’ll get for less than the cost of a kidney is Millalyzer (Link) and it doesn’t have a lot of woods or a way of dealing with most of the below.
There’s multiple issues with wood and correct chiploads (feed and speed). Since it’s a grown material it starts off variable and get more complicated from there. For a few common examples, woods cut differently with changes in grain structure, material integration, and moisture content. Some of those change it a lot like Rosewood or Ebony that integrates silica into the wood or very tight grained wood vs wide grain with the same hardness.
There’s also the issue that any calculator to have better than a quick “start here” number would need to know more about the tool than most ask for. Millalyzer is better at this as it’s looking for tool geometry like rake and helix. However, most don’t and even Millalyzer is missing a lot of them. There’s also an issue of getting those numbers as most manufacturers rarely if ever give them out.
In the same strain tool geometry will effect where your best cut will be as something like a tighter helix changes things like tear out chiploads, cutting forces, and what direction those forces are in.
There’s also other machine variables like runout that add and subtract from chipload (feed/speed) in multi flute cutters. Resonance and CNC/tool rigidity would be 2 other quick examples that can’t be completely accounted for in most of the calculators.
This functionally means that the only way to get “optimal” or the “best” settings is to test. Even big production shops with 6 figure machines do and only use calculators or manufacturer data as a starting point. I feel I should point out though that unless you are doing repeated cuts with the same tools and material or are on the margins of deflection/tool strength it may not be worth the time.
For the most part if you are using decent size and quality tools in soft material there’s a large range of “usable” chiploads. That’s not to say you can’t get better results digging into it but it’s more complicated than most assume. I feel it’s also worthwhile to learn a lot of these types of things to add to your troubleshooting and starting points. But not to the point of obsessing over the “optimal” vs cutting and making parts.
The closest you can get to this is Janka rating and only for like grain structure and integration. It’s a hardness rating created by measuring the amount of force it takes to embed a steel ball to a certain depth in the wood. Again though that’s, only one part of the wood variability. It can be useful if you have good data in a similar wood. You can use it as a ratio to your chipload/feed or pass depth. Won’t be ideal but it will get you a starting number that’s decent IF your original is good.
Be careful with these. There’s multiple issues but a quick summery would be that they are almost all making machine and material assumptions or giving conservative numbers. That not necessarily wrong, and to create a chart like this there’s not really a lot of options, it can lead to issues though. E.g. if they tested to get the numbers with an industrial machine those numbers will straight up break tools in a deflection limited system. The conservative ones, as long as they aren’t too conservative (rubbing) should be fine to use. You are probably leaving cut quality and tool life on the table but that may be worth the trade if you are doing one offs or short runs. Keep in mind that this will become less true as you get into larger tooling. There’s an assumption that as the tooling gets larger the machine gets more rigid. So you can get into areas where you’re machine limited even on the conservative numbers with larger tools.
Hope that’s useful. If anyone wants me to go more in depth on any of this let me know but I already am running into text wall territory.
Won’t go too much into this for bias reasons. However, I do like that they list chip thinning compensation for the listed stepovers. That will save a lot of people some headache.